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We address the response of a random heteropolymer to preferential solvation of certain monomer types at the
globule-solvent interface. For each set of monomers that can comprise the molecule’s surface, we represent the
ensemble of allowed configurations by a Gaussian distribution of energy levels, whose mean and variance
depend on the set’s composition. Within such a random energy model, mean surface composition is propor-
tional to solvation strength under most conditions. The breadth of this linear response regime arises from the
approximate statistical independence of surface and volume energies. Fluctuations play a crucial role in deter-
mining the excess of solvophilic monomers at the surface, and for a diverse set of monomer types can be
overcome only by very strong solvent preference.
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I. INTRODUCTION: CAN WE TREAT SURFACE AND
VOLUME FREE ENERGIES AS STATISTICALLY

INDEPENDENT FOR RANDOM HETEROPOLYMERS?

A polymer chain collapses into a compact globular state
in poor solvents. A chain with a quenched sequence of
chemically different units can further undergo a freezing
transition, in which the freedom of chain shape fluctuations
is sacrificed for the choice of optimal spatial contacts be-
tween monomers. This freezing, in some ways akin to fold-
ing of a protein, is subject to constraints imposed by the
chain connectivity, quenched sequence, and excluded vol-
ume. The effects of frustration due to these constraints are
well understood[1,2]. However well developed, current
theories of heteropolymer freezing ignore one obvious fact,
namely, that some chain segments are more favorably sol-
vated than others. By contrast, much of the protein literature
presumes preferential solvation to be a leading determinant
of tertiary structure. It is commonly held that a protein’s
surface is composed of hydrophilic units, while hydrophobic
units are invariably buried in the core.

For heteropolymers in general, it is clear that energy
gained through preferential exposure of solvophilic units
comes at a cost. Constraining particular units to the globule
surface restricts the selection of contacting monomer pairs
inside the globule, exacerbating frustration. In other words,
when the sequence of units has not been designed in an in-
telligent way, as is the case for the random sequence het-
eropolymer, preferential exposure may significantly reduce

the availability of low energy conformations. The question
thus arises: what is the effect of solvation on heteropolymer
freezing, or, more specifically, how large an excess of solvo-
philic units at the globule surface is consistent with freezing?

This question was first discussed by two of us in[7].
Using a replica approach, it was found that a solvent prefer-
ence of strengthG for particular monomers at the surface
lowers the ground state energyEg by an amount,KG2/Tfr.
Here, K,N2/3 is the number of monomers exposed to the
solvent,N is the number of monomers comprising the mol-
ecule, andTfr is the freezing temperature below which the
ground state dominates. For strong solvation this approach
apparently fails. In particular,KG2/Tfr can exceed the maxi-
mum possible solvation energy(without distortion of the
globular shape) KG corresponding to a completely solvo-
philic surface.

This article describes a more comprehensive treatment of
solvation. Our approach is based on the peculiar generaliza-
tion of the random energy model(REM) of Derrida [3].
Originally suggested as the simplest model of freezing in
spin glasses, the REM captures the essential features of het-
eropolymer freezing in three dimensions[4,5]. Although it
was emphasized in[6] that the REM is neither exact nor
universally applicable for heteropolymers, it is well known
[2] to be a very useful first approximation. The conventional
application of the REM to heteropolymers considers only
mean field effects, and does so only in the volume approxi-
mation. In this approximation, the total internal energy of a
conformation is just the sum of,N contact energies, and it
is approximately Gaussian distributed,wsEd~expf−sE
−Ēd2/2ND2g. In the volume approximation, this distribution

is determined solely by the mean B¯ and variancedB2 of

contact energies, so thatĒ=NB̄ and D2=dB2. With these
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parameters the energy spectrum of a typical sequence is con-
structed by drawingM =esN values fromwsEd, whereM is
the total number of compact conformations, ands is the cor-
responding conformational entropy per monomer.

By contrast, we wish to examine a finite molecule in a
way that explicitly incorporates effects of surface-related
fluctuations. The simplest way to incorporate the surface into
this picture is to imagine that contacts between surface
monomers and the solvent are also, in effect, statistically
independent random variables. The variance of surface en-
ergy,KG2, then adds to that of the volume energy. We use the
saddle point of the partition functionZ=esNedEwsEde−E/T, to

estimate the energy of representative conformations,E=Ē
−NdB2/T−KG2/T. The lower bound of the spectrum is
reached whenesNwsEd.1, yielding a typical ground state
energy

Eg
stypd . Ē − Î2sND . Ē − Î2sNdB −Îs

2

G2

dB
. s1d

Correspondingly,Tfr .dB/Î2s. The final term in Eq.(1), i.e.,
the change in ground state energy due to solvation, is(within
a factor of order unity) −KG2/Tfr, just as found in the replica
approach of Ref.[7]. Thus, the result of Ref.[7] is tanta-
mount to the assumption of statistical independence of the
surface and the volume in a heteropolymer globule.

II. MODEL AND METHOD: CONVOLUTION
OF MANY REMS

There are several reasons to be skeptical of the suggested
independence of surface and volume energies. First, remov-
ing a specific set of monomers from the globule interior to
the surface modifies the distribution of contacting mono-
mers. Second, there are a finite number of solvophilic mono-
mers in a given molecule(possibly fewer thanK). When a
large fraction is placed on the surface, the supply of solvo-
philic monomers is strongly depleted, and solvation energy
saturates. Finally, certain choices of surface monomers con-
strain configuration space more strongly than others.

We examine these effects using a model in which each
monomer is labeled by a quenched variables. When a
monomer with labels resides on the surface, it is assigned a
solvation energy −Gs. Solvophilic species are thus charac-
terized bys.0, while s,0 for solvophobic species. In its
total effect the solvent preferenceG can be viewed as an
external field that couples linearly to a net surface composi-
tion Csurf;oi[surfsi. Within the globule, a contacting pair of

monomers, of types and s8, is ascribed energyBss8=B̄
+dBss8. For simplicity we restrict attention to distributions
of monomer types,pssd, with zero mean and unit variance:

E dspssds = 0, E dspssds2 = 1. s2d

Imagine that a certain set of monomers is constrained to
stay on the surface. We denote this set asG. In our model
energetic consequences of such a constraint depend only on

the distributionfssd of monomer types inG. For example,
the effective distribution of contacting monomers(i.e., those
remaining inside the globule whenG is removed), peffssd,
may be written aspeffssd=pssd+sK /Ndfpssd− fssdg. The ef-
fective mean and variance of the contact energies are then
B̄eff=B̄+sK /NdaG and dBeff=dB+sK /NdbG, respectively.
For distributions satisfying Eq.(2), aG=0 andbG=2dB2f1
−edss2fssdg. Similarly, the solvation energy per surface
monomer isgG=−Gedssfssd.

We express the number of accessible conformations when
all monomers inG are confined to the surface asMG
;esN−KvG. Here,vG is the entropy loss per surface monomer
for particularG. Although smaller thanM, MG is still expo-
nentially large inN. In generalvG is not simply a functional
of fssd, but is instead a complicated function ofG. We will
assume that for any specificfssd the average ofvG over all
consistent realizations ofG is a constant independent offssd.
In order to recover the appropriate total number of confor-
mations after summing overG, we choose this constant to be
v̄=K−1lns N

K
d. lnsNe/Kd.

We consider a separate REM for each possible choice of
surfaceG. In doing so, we assume that allowed conforma-
tions in the corresponding subensembles are sufficiently di-
verse that their energies are Gaussian distributed, with

wGsEd ~ expF−
fE − NB̄− KsaG + gGdg2

2NdB2 + 2KbG
G . s3d

Ultimately, we must reconstruct the full ensemble of com-
pact chain fluctuations by superposing all possible suben-
sembles, i.e., by summing overG. This convolution of
REMs, each representing a distinct choice ofG, constitutes
our caricature of a random heteropolymer with a solvated
surface. It allows a straightforward treatment of the energy
fluctuations accompanying different states of the surface, a
feature we will show to be indispensable.

The set of conformations consistent with each choice of
surface-exposed monomersG will have a corresponding
minimum energyEgsGd. The lowest of these minima among
all subensembles then yields the ground state energyEg
=minGEgsGd. Characterizing the surface of the ground state
thus amounts to identifying which setG produces the lowest
value ofEgsGd. This task is more subtle than might appear at
first glance, since the optimal choice ofG may vary from one
realization of the REM to the next. Interfacial energy clearly
favors a solvophilic surface, but does it always yield the
ground state¿

It is straightforward to determine which setG is more
likely than any other to be manifest in the ground state. We
use the conditionMGwGfEg

stypdsGdg.1 to estimate the typical
lower bound of a subensemble energy spectrum, giving

Eg
stypdsGd . NB̄− NÎ2sdB + KesurfsGd, s4d

esurfsGd = aG + gG +
dB
Î2s

v̄ −Îs

2

bG

dB
. s5d

The choice of surfaceGsol minimizing esurfsGd in Eq. (5) is
maximally solvophilic, withuesurfsGsoldu,OsKd. There is no
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single choice ofG with a lower typical minimum energy.
For largeN, however, the number of available choices of

G (roughly ev̄K) is enormous, essentially guaranteeing that
EgsGd is atypically low (or high) for some subensembles. We
must therefore consider the distributions ofEgsGd to assess
whether variations in subensemble ground state energies can
compete with the optimal solvation energy associated with
Gsol. According to the statistics of extreme values[8], the
probability that the lowest energy in a particular suben-
semble deviates fromEg

stypdsGd by an amount dEgsGd
=EgsGd−Eg

stypdsGd is

WfdEgsGdg = expFdEgsGd
Tfr

− expSdEgsGd
Tfr

DG . s6d

Compared to the Gaussian distribution of energies within a
subensemble, WfdEgsGdg decays very slowly for
dEgsGd,0. This breadth is unimportant forEgsGsold, since
this choice of surface is unique(or at least can be accom-
plished in a small number number of ways compared toev̄K).
The number of subensembles with unremarkable surface en-
ergy suesurfsGdu!Kd, on the other hand, is vast. Within this
group we expect significant variations inEgsGd.

In Eq. (6) WsEd expresses the probability of observing a
ground state fluctuation of sizeE for a single subensemble.
For uesurfsGdu!K the expected number of subensembles with
dEgsGd between E and E+dE is thus approximately
ev̄KWsEd. Since the tail ofWfdEgsGdg is exponential, we
expectOs1d of the subensembles with insignificant surface
energy to haveudEgsGdu=OsKd. In other words, the varia-
tions in volume energy among these subensembles are com-
parable in magnitude to the largest possible surface energy.
This result may be viewed as the consequence of an effective
entropy that remains important even at low temperature. The
collection of subensembles with appreciable surface energy
is much smaller thanev̄K, and its entropy is correspondingly
low. Interestingly, as a consequence of the freezing transition
at T=Tfr, this entropy remains important even asT→0. The
ground state surface is uniformly solvophilic only when sol-
vent preference is strong enough to offset the effective en-
tropic cost.

BecausewGsEd depends only onfssd, it is natural to
group all subensembles with the same number density of
monomer types. We have shown that accounting for the dis-
parity in sizes of these groups is essential. The number of
ways to chooseK monomers with distributionfssd from a
pool of N monomers with distributionpssd is eNshfj, where

shfj = −E dspssdff ln f + s1 − fdlns1 − fdg. s7d

The densityfssd;Kfssd /Npssd and its corresponding en-
tropy shfj are precisely those relevant for Langmuir adsorp-
tion of an ideal gas mixture ontoK distinguishable sites.

At and above the freezing temperature, equilibrium of a
subensemble group is dominated by the saddle point of the
partition function

Zhfj = eNs−Kv̄+Nshfj E dEwGsEde−E/T. s8d

The group free energyFhfj=−T ln Zhfj, is then

Fhfj . F̄ + KTF−
dB2

T2 + v̄G + NTE dspssd

3HfFhssd − lnS1 − f

f
DG + lns1 − fdJ , s9d

where

hssd =
dB2

T2 s2 −
G

T
s. s10d

Volume terms independent offssd have been collected as

F̄ /N=B̄−Ts−dB2/2T. According to Eqs.(9) and (10), the
binding energy in our analogy to Langmuir adsorption varies
with particle types as sdB2/Tds2−Gs.

The full partition function of the polymer, a sum over all
Zhfj, is dominated by the subensemble group with lowest
free energy:

Z = o
fssd

Zhfj . Zhf*j. s11d

We calculate the optimal surface distributionf * ssd varia-
tionally, using a Lagrange multiplier to enforce proper nor-
malization offssd. We thereby obtain

f*ssd =
sN/Kdpssd
1 + Lehssd , s12d

where the constantL is determined by the normalization

E ds
sNKdpssd
1 + Lehssd = 1. s13d

Finally, evaluatingFhfj at f * ssd yields our approximation

for the total free energyF=F̄+Fsurf, with

Fsurf

K
. T3dB2

T2 − 1 + lnSLE ds
pssd

1 + LehssdD

−
E dspssdlnfLehssd/s1 + Lehssddg

E dspssds1 + Lehssdd 4 . s14d

Equations(12)–(14), appropriate forTùTfr, are our principal
results. They express the equilibrium distribution of mono-
mer types on the polymer surface and the corresponding in-
terfacial free energy density in terms of model parameters
and an effective fugacity for surface monomers,L.

III. ANALYSIS OF THE RESULTS

In order to make these results concrete we consider some
limiting cases and specific forms ofpssd. First, let us assume
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that preferential solvation does not lead to a significant
depletion of any monomer type inside the globule, so that
Kfssd!Npssd for every s. Then, Eq. (12) requires that
Lehssd@1, simplifying the above expressions to yieldfssd
~pssdexpf−hssdg and

Fsurf

K
. − T lnFE dspssdexpSdB2

T2 − hssdDG . s15d

To simplify this result even further, let us consider a bi-
nary distributionpssd=s1/2dfdss+1d+dss−1dg, which cor-
responds to the minimum of chemical diversity. Such a
model has prominence in the literature as the simplest model
of proteins [9–11] and designed heteroplymers in general
[12]. It has been pointed out though that this model does not
possess sufficient chemical diversity to ensure proteinlike
properties such as the existence of a unique structure[13,14].
Nevertheless, its consideration is instructive as the simplest
heteropolymer model where surface effects in finite mol-
ecules may play a role. In this case depletion is invariably
weak, since takingK monomers away to the surface cannot
exhaust the total stockN/2 of either monomer type. Equa-
tion (15) then trivially yields

Fsurf

K
= − T lnFcoshSG

T
DG . s16d

For G /T!1, Fsurf.−KG2/2T, precisely as obtained by as-
suming statistical independence of surface and volume.
Since net surface composition is conjugate to solvation
strength, its equilibrium value may be computed by differen-
tiating Eq.(16) with respect toG, yielding

kCsurflG = KtanhSG

T
D .

KG

T
. s17d

In this limit the net surface composition is proportional to the
“field” G. The above results may therefore be understood in
simple terms as a manifestation of linear response. From Eq.
(17) we identify a susceptibilityx.K /T corresponding to
surface fluctuations of sizekCsurf

2 lG=0=K in the absence of
solvation. In other words, the excess of solvophilic mono-
mers at the surface is governed byK effectively independent
random variables. This simple behavior results directly from
the prevalence of variations in volume energy over surface
interactions. But whenG*T solvation wins out. Linear re-
sponse then breaks down due to saturation, asFsurf/K and
Csurf approach their limiting values of −G andK.

The properties of the ground state are obtained by evalu-
ating Eqs.(17) and (16) at T=Tfr. Dependence on the inter-
action parameterdB is implicit (throughTfr) below the freez-
ing transition. ForT.Tfr, however, the surface response is
insensitive todB. In particular,bG vanishes, since no binary
choice offssd can change the second moment of the contact
energy distribution. As a consequence, surface and volume
behave independently for arbitraryG.

The opposite extreme of monomer diversity is described
by a smooth form ofpssd, describing a continuous variety of
chemical identities. We take a Gaussian distributionpssd
~exps−s2/2d as a simple example. For weak solvation,

G /T&1, pssd is nowhere significantly depleted, and Eq.(15)
remains an appropriate approximation. Gaussian integration
yields

Fsurf

K
= −

G2

2T
−

dB4

T3 s18d

to leading order indB/T. (The basic assumption that mono-
mer contacts are statistically independent is plausible only
for dB/Tfr =Î2s!1 [15].) The first term in Eq.(18) again
reflects a linear response. The second term describes the ben-
efit in monomer contact energy due to partial removal of
some monomer types from the globule interior. This effect is
independent of solvation strength to leading order and domi-
nates interfacial free energy for very smallG.

For such a diverse set of monomer types, surface response
saturates only when a molecule’s supply of the most solvo-
philic type is exhausted. Assuming weak depletion is clearly
inappropriate here. A maximally solvophilic surface is ob-
tained whenKfssd=Npssd for sùsmax, and fssd=0 for
s,smax. The cutoff pointsmax is determined by normaliza-
tion:

E
smax

`

dspssd =
K

N
. s19d

For a Gaussianpssd, Eq. (19) gives smax=Î2 lnsN/Kd
.Îs2/3dln N. Because this choice of surface composition
uniquely specifies a monomer setG, the associated entropy
shfj vanishes. The free energy is then easily estimated from
Eq. (9), giving Fsurf/K.−Gsmax. Comparing this result with
the free energy of linear response, we estimate that saturation
occurs aroundG.2Tsmax,TÎln N. Reaching this crossover
may thus require much stronger solvation, and result in more
favorable surface energy, than in the binary case. The rel-
evant distinction between these distributions is the existence
of extremely solvophilic monomers, whose small numbers
entail considerable entropic cost in constraining them to the
surface.

Figure 1 summarizes the mechanisms of surface response
we have identified. These results support a view of surface
solvation energy and volume energy as statistically indepen-
dent random variables. In particular, the linear response cor-
responding to this notion is valid over a wide range of tem-
perature and solvation strength. Saturation at largeG,
although a nonlinear effect, does not truly arise from corre-
lation of surface and volume. It is instead a consequence of
the finitude of surface area or of the number of solvophilic
monomers. The regime of weak response, in whichFsurf/K
,dB4/T3, does reflect coupling of surface and volume. But
it involves monomer contact energies alone, as indicated by
insensitivity to G. Within our model, contributions from
more intimate connections between surface and volume are
small compared to unity whenK!N.

IV. TESTING THE RESULTS WITH SIMULATIONS

Evaluating the accuracy of our predictions for model
polymers is made difficult by the paucity of unexposed
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monomers in chains of computationally manageable length.
Here, we present numerical results for the surface response
of a lattice heteropolymer withN=27. In any compact con-
formation of the 27-mer, only one monomer is completely
sequestered from the external environment. Nonetheless,
there is some variety in the degree of surface exposure of the
remaining sites. The eight corners of a 33333 cube have
nssd=3 “solvent” contacts each, whilenssd=2 for the 12 edge
sites, andnssd=1 for the six faces. For this model we thus
define surface composition asCsurf=Si=1

27 ni
ssdsi and surface

energy asGCsurf. For both binary and Gaussian distributions
of monomer types, we have determined the ground state con-
formation of 105 random sequences as a function ofG by
enumerating all compact conformations. The deviation of
Csurf from its maximum value(consistent with polymeric
constraints) Cmax, averaged over these sequences, is plotted
in Fig. 2. Results for the two distributions are remarkably
similar. Despite the short length of this model chain, the
basic features we have described are evident. Surface com-
position grows roughly linearly forG&dB. Full saturation
occurs only for very largeG and is approached more quickly
for the copolymer.

We note that the results of the simulations are consistent
with analytical theory despite the small size of the lattice
model protein used. Real proteins are longer chains and for
them the effect of separation into volume and surface should
be more pronounced than for the 27-mers studied here.

V. DISCUSSION AND CONCLUDING REMARKS

The analysis we have presented is based on the mean field
view of monomer contact energies underlying the REM. In
treating individual contacts as statistically independent quan-
tities, we thus neglect the possibly significant overlap be-
tween similar chain conformations. This approximation is
justified when only a small fraction of conformational pairs
overlap strongly, a condition that depends on the details of a

particular kind of molecule or model chain[6]. Within this
model of volume energetics our treatment of surface is, by
contrast, not mean field in nature. Indeed, we have shown
that variations in subensemble energy minima may be com-
parable to the most favorable possible solvation energy. It is
easily possible that these variations will overwhelm the en-
ergetic benefit of a maximally solvophilic surface. A mean
field approach disregarding correlated variations in surface
and volume energies would instead predict a uniformly sol-
vophilic surface in the ground state.

A potentially more serious shortcoming of our model is
the neglect of variations in the number of conformations,vG,
consistent with different choices of monomers constrained to
the surface. A particular choice ofG defines the lengths of
chain segments that are free to explore the globule interior
before returning to the surface. Different “loop” lengths will
certainly correspond to differing degrees of conformational
entropy. As a first approximation it seems reasonable to as-
sume that these variations are averaged out by grouping
choices ofG with the same overall collection of monomer
types, fssd. A more sophisticated treatment of the het-
eropolymer surface must account for this more subtle en-
tropic effect of conformational constraints.

The diversity of amino acid monomers comprising pro-
teins lies somewhere between those of binary and Gaussian
distributions. The surface behavior we have described should
thus be relevant for chains of these units arranged in random
sequence. Specifically, we predict that preferential solvation
must be much larger than typical thermal excitations in order
to stabilize a strictly solvophilic surface. Indeed, the repre-
sentation of amino acids at the surface of known folded pro-
tein structures reflects their relative free energies of transfer
from water to a nonpolar solvent[16]. In other words, sur-
face free energy is evidently not optimized in a protein’s
native state. Sequences found in nature are not random in at
least one respect important to freezing. Their ground states

FIG. 1. Response of a random heteropolymer to surface solva-
tion, shown in the plane of temperatureT and solvation strengthG.
Crossover lines are the result of equating free energies(or ground
state energies) for T,Tfr. For a binary distribution of monomer
types, the weak response regime is absent, andsmax=1. FIG. 2. Ground state surface compositionCsurf, relative to the

maximum possible valueCmax, averaged over 105 random se-
quences drawn from binary(dashed line) and Gaussian(solid line)
distributions.
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lie well below the effective continuum of non-native ener-
gies. The influence of this energy gap on surface solvation
requires a consideration of sequence design that is beyond
this discussion.
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